Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Med Chem ; 65(17): 11840-11853, 2022 09 08.
Article in English | MEDLINE | ID: covidwho-2016520

ABSTRACT

Site-selective lysine modification of peptides and proteins in aqueous solutions or in living cells is still a big challenge today. Here, we report a novel strategy to selectively quinolylate lysine residues of peptides and proteins under native conditions without any catalysts using our newly developed water-soluble zoliniums. The zoliniums could site-selectively quinolylate K350 of bovine serum albumin and inactivate SARS-CoV-2 3CLpro via covalently modifying two highly conserved lysine residues (K5 and K61). In living HepG2 cells, it was demonstrated that the simple zoliniums (5b and 5B) could quinolylate protein lysine residues mainly in the nucleus, cytosol, and cytoplasm, while the zolinium-fluorophore hybrid (8) showed specific lysosome-imaging ability. The specific chemoselectivity of the zoliniums for lysine was validated by a mixture of eight different amino acids, different peptides bearing potential reactive residues, and quantum chemistry calculations. This study offers a new way to design and develop lysine-targeted covalent ligands for specific application.


Subject(s)
Lysine , Peptides , Coronavirus 3C Proteases/chemistry , Lysine/chemistry , Peptides/chemistry , SARS-CoV-2/enzymology , Serum Albumin, Bovine/chemistry , Water/chemistry
2.
Biomolecules ; 11(11)2021 10 27.
Article in English | MEDLINE | ID: covidwho-1488476

ABSTRACT

Glycosylation is an important post-translational modification that affects a wide variety of physiological functions. DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin) is a protein expressed in antigen-presenting cells that recognizes a variety of glycan epitopes. Until now, the binding of DC-SIGN to SARS-CoV-2 Spike glycoprotein has been reported in various articles and is regarded to be a factor in systemic infection and cytokine storm. The mechanism of DC-SIGN recognition offers an alternative method for discovering new medication for COVID-19 treatment. Here, we discovered three potential pockets that hold different glycan epitopes by performing molecular dynamics simulations of previously reported oligosaccharides. The "EPN" motif, "NDD" motif, and Glu354 form the most critical pocket, which is known as the Core site. We proposed that the type of glycan epitopes, rather than the precise amino acid sequence, determines the recognition. Furthermore, we deduced that oligosaccharides could occupy an additional site, which adds to their higher affinity than monosaccharides. Based on our findings and previously described glycoforms on the SARS-CoV-2 Spike, we predicted the potential glycan epitopes for DC-SIGN. It suggested that glycan epitopes could be recognized at multiple sites, not just Asn234, Asn149 and Asn343. Subsequently, we found that Saikosaponin A and Liquiritin, two plant glycosides, were promising DC-SIGN antagonists in silico.


Subject(s)
COVID-19/immunology , Cell Adhesion Molecules/antagonists & inhibitors , Epitopes/chemistry , Glycosides/chemistry , Lectins, C-Type/antagonists & inhibitors , Polysaccharides/chemistry , Receptors, Cell Surface/antagonists & inhibitors , Amino Acid Motifs , Binding Sites , COVID-19/metabolism , Computer Simulation , Cytokines/metabolism , Flavanones/chemistry , Glucosides/chemistry , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Monosaccharides/chemistry , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/chemistry , Saponins/chemistry , Spike Glycoprotein, Coronavirus/chemistry
3.
Protein & cell ; : 1-21, 2021.
Article in English | EuropePMC | ID: covidwho-1479283

ABSTRACT

A fundamental challenge that arises in biomedicine is the need to characterize compounds in a relevant cellular context in order to reveal potential on-target or off-target effects. Recently, the fast accumulation of gene transcriptional profiling data provides us an unprecedented opportunity to explore the protein targets of chemical compounds from the perspective of cell transcriptomics and RNA biology. Here, we propose a novel Siamese spectral-based graph convolutional network (SSGCN) model for inferring the protein targets of chemical compounds from gene transcriptional profiles. Although the gene signature of a compound perturbation only provides indirect clues of the interacting targets, and the biological networks under different experiment conditions further complicate the situation, the SSGCN model was successfully trained to learn from known compound-target pairs by uncovering the hidden correlations between compound perturbation profiles and gene knockdown profiles. On a benchmark set and a large time-split validation dataset, the model achieved higher target inference accuracy as compared to previous methods such as Connectivity Map. Further experimental validations of prediction results highlight the practical usefulness of SSGCN in either inferring the interacting targets of compound, or reversely, in finding novel inhibitors of a given target of interest. Supplementary Information The online version contains supplementary material available at 10.1007/s13238-021-00885-0.

4.
J Med Chem ; 65(4): 2794-2808, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1192017

ABSTRACT

A novel series of peptidomimetic aldehydes was designed and synthesized to target 3C protease (3Cpro) of enterovirus 71 (EV71). Most of the compounds exhibited high antiviral activity, and among them, compound 18p demonstrated potent enzyme inhibitory activity and broad-spectrum antiviral activity on a panel of enteroviruses and rhinoviruses. The crystal structure of EV71 3Cpro in complex with 18p determined at a resolution of 1.2 Å revealed that 18p covalently linked to the catalytic Cys147 with an aldehyde group. In addition, these compounds also exhibited good inhibitory activity against the 3CLpro and the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), especially compound 18p (IC50 = 0.034 µM, EC50 = 0.29 µM). According to our previous work, these compounds have no reasons for concern regarding acute toxicity. Compared with AG7088, compound 18p also exhibited good pharmacokinetic properties and more potent anticoronavirus activity, making it an excellent lead for further development.


Subject(s)
Aldehydes/pharmacology , Antiviral Agents/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Enterovirus/drug effects , Peptidomimetics/pharmacology , SARS-CoV-2/drug effects , Aldehydes/chemical synthesis , Aldehydes/chemistry , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/isolation & purification , Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Dose-Response Relationship, Drug , Drug Design , Humans , Male , Mice , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Peptidomimetics/chemical synthesis , Peptidomimetics/chemistry , Structure-Activity Relationship
6.
J Integr Med ; 18(3): 229-241, 2020 05.
Article in English | MEDLINE | ID: covidwho-97719

ABSTRACT

OBJECTIVE: Lung-toxin Dispelling Formula No. 1, referred to as Respiratory Detox Shot (RDS), was developed based on a classical prescription of traditional Chinese medicine (TCM) and the theoretical understanding of herbal properties within TCM. Therapeutic benefits of using RDS for both disease control and prevention, in the effort to contain the coronavirus disease 2019 (COVID-19), have been shown. However, the biochemically active constituents of RDS and their mechanisms of action are still unclear. The goal of the present study is to clarify the material foundation and action mechanism of RDS. METHODS: To conduct an analysis of RDS, an integrative analytical platform was constructed, including target prediction, protein-protein interaction (PPI) network, and cluster analysis; further, the hub genes involved in the disease-related pathways were identified, and the their corresponding compounds were used for in vitro validation of molecular docking predictions. The presence of these validated compounds was also measured in samples of the RDS formula to quantify the abundance of the biochemically active constituents. In our network pharmacological study, a total of 26 bioinformatic programs and databases were used, and six networks, covering the entire Zang-fu viscera, were constructed to comprehensively analyze the intricate connections among the compounds-targets-disease pathways-meridians of RDS. RESULTS: For all 1071 known chemical constituents of the nine ingredients in RDS, identified from established TCM databases, 157 passed drug-likeness screening and led to 339 predicted targets in the constituent-target network. Forty-two hub genes with core regulatory effects were extracted from the PPI network, and 134 compounds and 29 crucial disease pathways were implicated in the target-constituent-disease network. Twelve disease pathways attributed to the Lung-Large Intestine meridians, with six and five attributed to the Kidney-Urinary Bladder and Stomach-Spleen meridians, respectively. One-hundred and eighteen candidate constituents showed a high binding affinity with SARS-coronavirus-2 3-chymotrypsin-like protease (3CLpro), as indicated by molecular docking using computational pattern recognition. The in vitro activity of 22 chemical constituents of RDS was validated using the 3CLpro inhibition assay. Finally, using liquid chromatography mass spectrometry in data-independent analysis mode, the presence of seven out of these 22 constituents was confirmed and validated in an aqueous decoction of RDS, using reference standards in both non-targeted and targeted approaches. CONCLUSION: RDS acts primarily in the Lung-Large Intestine, Kidney-Urinary Bladder and Stomach-Spleen meridians, with other Zang-fu viscera strategically covered by all nine ingredients. In the context of TCM meridian theory, the multiple components and targets of RDS contribute to RDS's dual effects of health-strengthening and pathogen-eliminating. This results in general therapeutic effects for early COVID-19 control and prevention.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/chemistry , Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/chemistry , Medicine, Chinese Traditional , Molecular Docking Simulation , Pneumonia, Viral/drug therapy , Antiviral Agents/therapeutic use , Betacoronavirus/enzymology , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Cysteine Endopeptidases/chemistry , Drugs, Chinese Herbal/therapeutic use , Humans , Mass Spectrometry , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Protein Interaction Maps , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL